Session V Waste Management

Management of Solid Waste Arising from Fukushima Daiichi (1F) Decontamination and Decommissioning

11st April 2016

Jun Matsumoto

General Manager of Project Planning Department,

Vice President of Fukushima Daiichi Decontamination and Decontamination Engineering Company,

Tokyo Electric Power Company Holdings, Inc.

Contents

- 1. Waste Arising from 1F Decontamination and Decommissioning
- 2. Waste Flow from Waste Generation to Storage
- 3. Difference between Normal Decommissioning and 1F Decommissioning
- 4. Current Status of Temporary Storage
- 5. Future Challenge

1. Waste Arising from 1F D&D

Gaseous, liquid and solid waste are generated by decommissioning works. Most radioactivity concentrated in the solid waste to be safely stored.

2. Waste Flow from Generation to Storage

Before accident: Solid waste stored in storage building with containment and a shielding After accident: Vast amount waste generated by recovering work from emergency situation in short time. Due to the limited capacity in waste storage buildings, large part of waste stored outside temporarily as an emergency response.

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

3. Difference between Normal Decommissioning and 1F Decommissioning

R&D for volume reduction and processing and disposal challenged due to the vast amount and a wide variety of waste generated from 1F Decommissioning

Table 1. Management flow for solid waste arising from normal decommissioning

	Properties	Waste generation	Volume reduction	Storage	Waste route	Packaging	Transport	Disposal
Features	•Origin of contamination clear. •Waste volume limited	Characterization possible before demolishing	Incineration or cutting selected according to the materials	Use at existing facilities	Established	Select appr based	opriate tecl on waste r	nnologies oute
Technologies	 Nuclide composition known Analytical method developed 	_	1	1	_	1	1	✓ (No disposal site yet)
Regulation /Rule	_	_	1	\checkmark	_	1	1	Under discussion

Table 2. Management flow for solid waste arising from 1F decommissioning

	Properties	Waste generation	Temporary storage	Volume reduction	Storage	Waste route	Packaging	Trans -port	Disposal
Features and challenges	 ∙Origin is complicated ∙Vast amount 	Characterization needed	Temporary storage according to the surface dose	Promote volume reduction for efficient storage	New storage building needed due to the lack of storage capacity	New category needed	Selec technologie	t approp es based route	riate on waste
Technologies	Nuclide composition unknown	Enlarged analytical system needed	1	1	1	_	R&D needed	1	R&D needed
Regulation /Rule	_	_	Exemption	Discussion needed	Discussion needed	_	Develop	ment is r	needed

4. Classification of "rubble, etc." and Temporary Storage Method

4. Current Status of temporary storage of "rubble, etc."

Outdoor storage (0.1mSv/h or less)

Soil covered temporary storage facility (30mSv/h or less, plus rubbles from 1 to 4 reactor building)

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

Outdoor container storage (10mSv/h or less)

Solid waste storage building (More than 30mSv/h)

4. Temporary Storage Volume of "rubble, etc."

Rubble				
Surface dose (mSv/h)	Temporary Storage Area	Storage Volume (m ³)	Storage Capacity (m ³)	
≦0.1	B, C, F1, J, N, O, P1, U, No1 storage building	122,800	208,450	
≦1	D, E1, P2, W	33,800	57,300	
1~30	A1, A2, E2, F2, L, Q, No2 storage building	20.300	34,850	
>30	No3~No8 storage building	6,600	15,000	
Total	-	183,800	315,600	
Felled tree				
Category	Temporary Storage Area	Storage Volume (m ³)	Storage Capacity (m ³)	
Root	Н, І, М	64,300	73,200	
Branch/leaves	G, R, S, T, V	20,800	74,400	
Total	_	84,200	147,600	
Used protective	clothing			
Tempor	ary Storage Area	Volume	Storage Capacity (m³)	
a. b. c. d. e. f. g	. h. i. i. k. l. m. n. o	69.980	70.040	

4. Temporary Storage Method and Classification of Secondary Waste from Water Treatment Systems

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

4. Current Status of temporary storage of "Used Vessels"

Rack (2nd Cesium absorption apparatus)

Box culvert (Cesium absorption apparatus)

HIC-supporting type box culvert

(HICs from Multiple Radio-nuclides Removal System)

4. Temporary Storage Volume of Secondary Waste from Water Treatment

5. Future Challenge · · Improvement of Waste Management Conditions (FROM "Temporary Storage" TO "Storage")

5. Future Challenge · · Forecast of Waste Generation (Before additional Measures)

5. Future Challenge · · Forecast of Waste Generation (After additional Measures)

By 2028, outdoor temporary storage areas eliminated except those for low contaminated rubble and contaminated soil

- To improve waste storage conditions continuously, followings will be challenged:
 - Eliminate / reduce temporary storage area
 - Develop in-site reuse and recycle route for low contaminated metal and concrete
 - Research / develop decontamination technology for contaminated soil
 - Stabilize waste form
 - Consider stabilization technology to the secondary waste arising from contaminated water treatment system by eliminating the water

Promoting characterization

- Necessary to analyze waste especially long lived nuclides which are important to investigate processing and disposal of waste.
- Promote preparation of analytical labs with more capacity jointly with JAEA in order to meet the varieties of and vast volume of waste generated from decommissioning work.
- Development of waste processing and disposal methodology
 - Develop appropriate waste processing and disposal methodology meeting the individual results of waste characterization.
- Renewing waste categorization
 - Based on the results of characterization and development of waste processing and disposal methodology, renew waste categorization on storage and incorporate into management of storage

Thank you for your attention.

