



The 1<sup>st</sup> International Forum on the Decommissioning of the Fukushima Daiichi Nuclear Power Station -Commemorating 5 years since the Great East Japan Earthquake-

Apr.10-11, 2016

### Overview of Radioactive Waste Management in Japan And R&D Activities for Fukushima Daiichi

### Toru OGAWA

Collaborative Laboratories for Advanced Decommissioning Science (CLADS) Japan Atomic Energy Agency (JAEA) Tokai, Japan

The 1st International Forum on the Decommissioning of the Fukushima Daiichi NPS, Apr. 10-11, 2016







- Classification and Disposal Concepts of Radioactive wastes in Japan
- Disposal Practice and Plan in Japan
- R&D of Fukushima Daiichi Radioactive Wastes







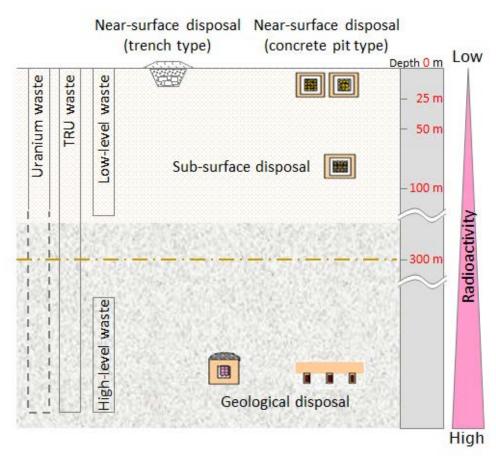
# Classification and Disposal Concepts of Radioactive wastes in Japan

# Disposal Practice and Plan in Japan

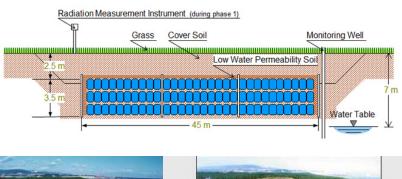
# R and D of Fukushima Daiichi Radioactive Wastes



## **Classification of Radioactive Waste in Japan**




| Classification                                      |                                                         |                                             | Example                                                     | Origin of Waste                                                  | Disposal<br>(example)                                              |
|-----------------------------------------------------|---------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|
| High-level radioactive waste (HLW)                  |                                                         |                                             | Canister                                                    | Reprocessing facilities                                          | Geological                                                         |
| Low-<br>level<br>radio-<br>active<br>waste<br>(LLW) | Waste from<br>Power<br>Reactors                         | Relatively<br>High Radioactive<br>Waste     | Control Rods, Core<br>Internals                             | Power Reactors                                                   | Sub-surface                                                        |
|                                                     |                                                         | Relatively<br>Lower<br>Radioactive<br>Waste | Liquid waste,<br>Filters,<br>Used Equipment,<br>Expendables |                                                                  | Concrete Pit Type                                                  |
|                                                     |                                                         | Very Low-Level<br>Radioactive<br>Waste      | Concrete, Metals                                            |                                                                  | Trench Type                                                        |
|                                                     | Waste Containing Transuranic<br>Nuclides<br>(TRU Waste) |                                             | Parts of Fuel Rod,<br>Liquid waste,<br>Filters              | Reprocessing Facilities,<br>MOX Fuel Manufacturing<br>Facilities | Geological<br>Sub-surface<br>Concrete Pit Type                     |
|                                                     | Uranium Waste                                           |                                             | Expendables,<br>Sludge,<br>Used Equipment                   | Enriched and Fuel<br>Manufacturing Facilities                    | Sub-surface<br>Concrete Pit Type<br>Trench Type<br>(or Geological) |
| Waste below the Clearance Level                     |                                                         |                                             | Most Waste from<br>Dismantling                              | Sources as shown in the above                                    | Reuse<br>Disposal as general<br>wastes                             |


The 1st International Forum on the Decommissioning of the Fukushima Daiichi NPS, Apr. 10-11, 2016

(AEA) Disposal Concept of Radioactive Waste in Japan AD

# Several types of disposal facilities have been designed according to the radioactivity levels of the wastes.



#### Demonstration Test of Very Low-Level Concrete Waste Disposal (Trench Type) arising from decommissioning of JPDR (JAEA,Tokai)





Overview of the Disposal Facility Before Installation of the VLLW Overview of the Disposal Facility Covered with Soil (1997)

http://www.jaea.go.jp/english/04/ntokai/backend/backend\_01\_04.html

http://www.jaea.go.jp/english/04/ntokai/backend/backend\_01\_04\_01.html







# Classification and Disposal Concept of Radioactive wastes in Japan

## Disposal Practice and Plan in Japan

# R and D of Fukushima Daiichi Radioactive Wastes





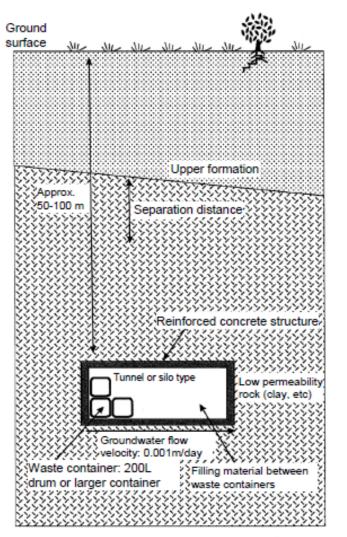
#### Japan Nuclear Fuel Limited Low-level Radioactive Waste Disposal Center in Rokkasho, Aomori

Total of 284,763 low-level waste drums has been received as of Jan.31, 2016.

http://www.jnfl.co.jp/business-cycle/llw/llw-center.html



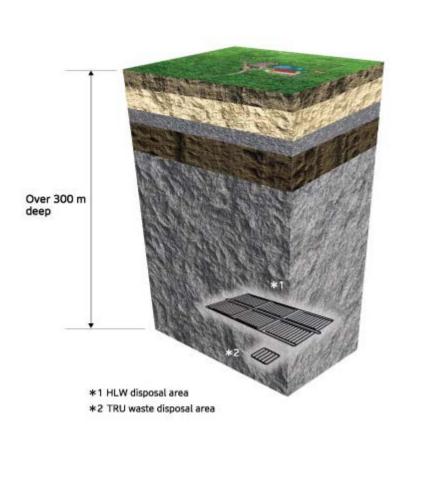
## Waste Packages to No. 1 & 2 Disposal Facility

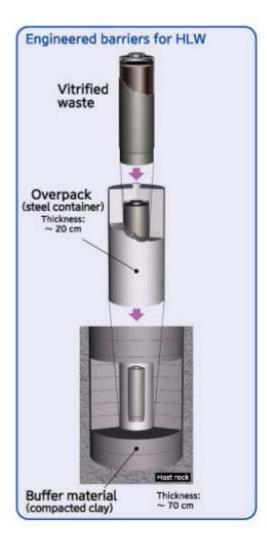



|         | No.1 disposal facility           | No.2 disposal facility |  |
|---------|----------------------------------|------------------------|--|
| Content |                                  |                        |  |
| Waste   | Concentrate,<br>Spent IEX, etc., | Metal, Plastic, etc.,  |  |
| Binder  | Cement, Bitumen, Plastic         | Cement                 |  |



# **Outline of Sub-surface Disposal**




- I. The waste is disposed of at a depth at which underground facilities can be constructed (e.g. about 50-100m from surface), taking underground conditions into consideration.
- II. Rocks with the ability to prevent radionuclide transport are selected.
- III. A disposal facility which has the ability to contain radionuclides, such as a concrete vault, is constructed.
- IV. Considering the decrease in radionuclide concentrations due to decay, the disposal facility is managed for a period of several 100 years.

Second Progress Report on Research and Development for TRU Waste Disposal in Japan - Repository Design, Safety Assessment and Means of Implementation in the Generic Phase -







http://www.numo.or.jp/en/jigyou/geological.html



#### SCJ Recommendation to Japan Atomic Energy Commission (JAEC):

- Social consensus on the nuclear energy policy should be pursued before talking about geological disposal of HLW;
- 2. The limitation of scientific and technological capability should be recognized and scientific autonomy for scientific deliberation should be secured;
- 3. A policy framework should be rebuilt centered on temporary storage and total volume control of the waste;
- 4. Socially acceptable procedures should be pursued, formulating policies based on the principle of fair burden-sharing;
- 5. Multi-step procedures should be pursued to build consensus by establishing venues for discussion and
- 6. Need for long-term tenacious efforts to solve the problems should be recognized.

JAEC Recommendation to the Government:

- 1. To clarify the amount and nature of HLW in association with nuclear fuel cycle policies to be pursued in the post-Fukushima accident era, noting that one repository under planning will be sufficient for several decades of nuclear power generation;
- 2. To review the safety of geological disposal of HLW based on the latest knowledge of science and technology and geology in particular, and share the result with the public as well as learned societies;
- 3. To make it clear that its efforts to realize final disposal of HLW be promoted step-by-step, assuring reversibility and retrievability so that the course of action can be modified based on the result of consensus with the public and risk assessments to be emerged in the future;
- 4. To take initiative in sharing information and exchanging opinions with the public through regular meeting with citizens and municipalities.

Shunsuke Kondo, "Current Status of Program for Geological Disposal of high-level radioactive waste (HLW) in Japan", Sep. 2014.

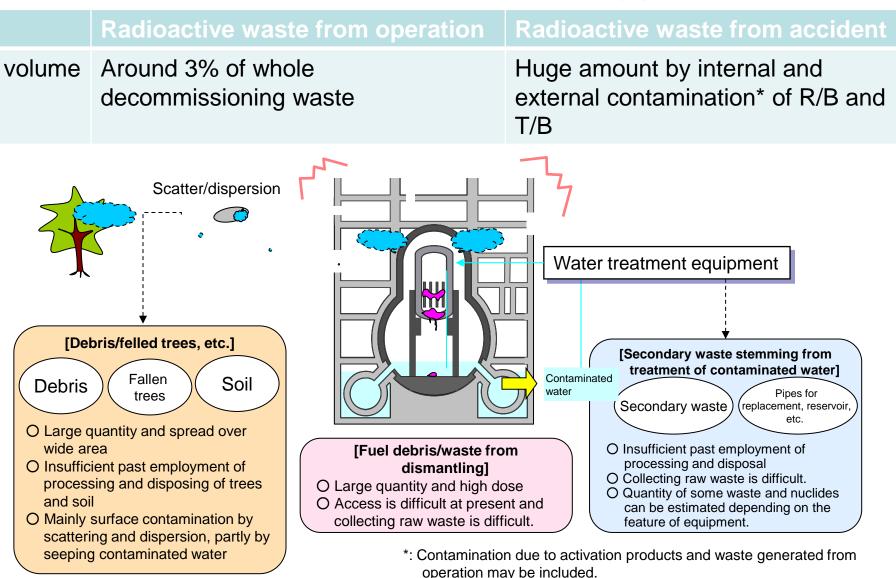








## Disposal Practice and Plan in Japan


# R & D of Fukushima Daiichi Radioactive Wastes

The 1st International Forum on the Decommissioning of the Fukushima Daiichi NPS, Apr. 10-11, 2016



## Waste Resulting from Accident at Fukushima Daiichi NPS(1)









# Waste Resulting from Accident at Fukushima Daiichi NPS(2)

# R&D items to minimize uncertainty in waste processing and disposal

- Generation of waste [quantity, type, period]
- Handling (collecting/classifying) [difficulty]
- Characterization [sufficiency of information, difficulty of sampling, representativeness of sample]
- Technologies for processing and packaging waste
- Burial and disposal methods and safety assessment
- Waste generated from operation has its own problem but is <u>fairly under control</u>.
  - Information on basic properties of waste, including quantity at present, future change, activity and chemical substances contained in individual waste is identified.
  - Both unprocessed and processed wastes are appropriately stored and managed in accordance with the current regulations.
  - Regulations and standards, as well as disposal method and safety assessment method, have been in place.
- Many uncertainties poses important technical problems in the disposal of wastes from the accident at Fukushima Daiichi. Solving these uncertainties and bringing the wastes under control are the major goals of technology development.



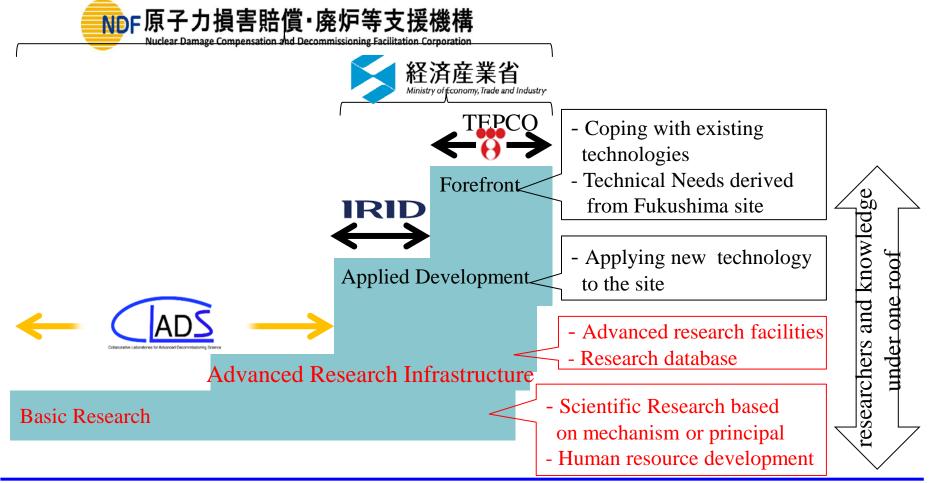


Technical Strategic Plan 2015 for Decommissioning of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company (formulated April, 2015)

- To provide a firm technical basis for the government's Mid-and-Long-Term Roadmap.
- To serve as an aid for smooth and steady implementation of decommissioning.

Mid-and-Long-Term Roadmap(revised June, 2015)

#### FY 2017

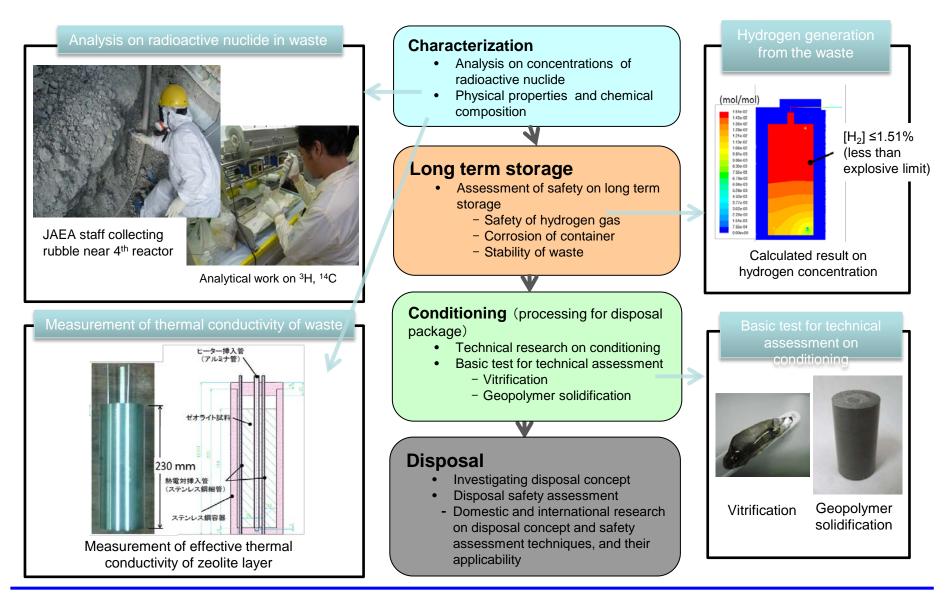

- Basic concept of processing and disposal for solid radioactive wastes. FY 2021
- Prospects of a processing/disposal method and a technology related to its safety.

## (AEA) Whole Structure of R&D for Decommission of Fukushima



MEXT promotes basic research and provides advanced research infrastructures in order to

- realize technical breakthroughs with scientific knowledge based on mechanisms or principals;
- establish an under-one-roof research hub, with advanced research facilities, where industry, academia and government cooperate with each other;
- facilitate human resource development beyond the field of nuclear science in a long-term perspective

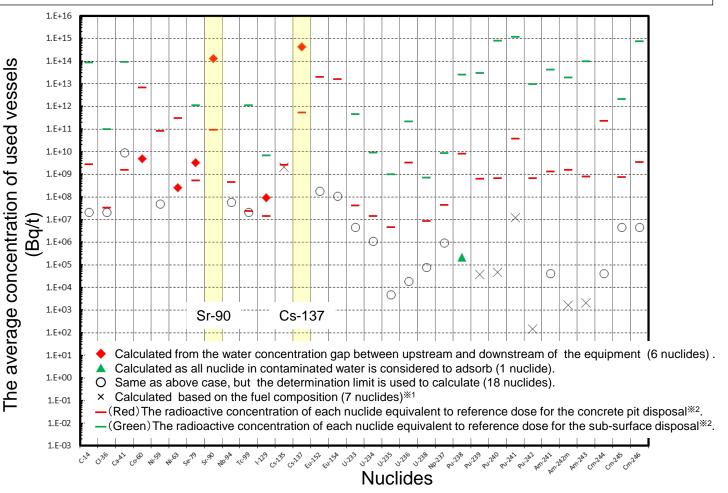



The 1<sup>st</sup> International Forum on the Decommissioning of the Fukushima Daiichi NPS, Apr. 10-11, 2016



### Flow Chart and Research Items on Disposal of Radioactive Waste



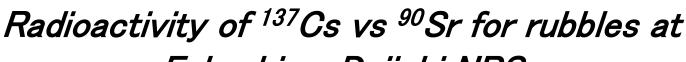



## Inventory estimation based on analytical results



The inventory of a secondary waste generated from contaminated water treatment is estimated using the analytical data of the contaminated water between upstream and downstream of the equipment.

- The inventory of the cesium adsorption vessel is estimated using analytical data of the contaminated water.
- The inventory of the undetected nuclide at the inlet of the equipment is calculated on the presumption that the detection limit of the nuclide is considered the upstream concentration.
- They can be compared with radioactive concentration of each nuclide equivalent to reference dose in an examination of the disposal concept.




\*1 The value calculated by the rate of nuclide composition in the fuel (JAEA-Data/Code 2012-018).

2 Nuclear Safety Commission, "Upper Bounds of Radioactive Concentration in Burial of Low-Level Radioactive Solid Waste (in Japanese)", May 2007.

This figure includes the results of "Development of technology for treatment and disposal of accident waste" subsidized to JAEA and IRID by the Agency for Natural Resources and Energy.







Fukushima Daiichi NPS



Radioactivity concentration for rubbles sampled around each Unit and in the building of each Unit

Correlation of Radioactivity of <sup>137</sup>Cs vs <sup>90</sup>Sr was found.





 Collaboration research and information exchange with international organization and research institutes in many countries

| International<br>organization and<br>countries | Institutes                                                                                                                                    |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| International Organization                     | OECD/NEA、IAEA                                                                                                                                 |  |  |
| United States of America                       | DOE、NRC、ANL、INL、LANL、LBNL、ORNL                                                                                                                |  |  |
| Europa                                         | England : NNL、 France : CEA、IRSN、 Germany : KIT、 Finland : VTT、<br>Czech Republic : NRI/CVR、 Sweden : KTH、<br>Europa : ITU、 Ukraine : ISP-NPP |  |  |

1<sup>st</sup> CLADS Decommissioning Workshop and Seminar -International Collaboration towards Advanced Decommissioning of Fukushima-Daiichi NPP-

#### ~November 10-11, 2015 at Tokai, Ibaraki~ Around 130 participants including 19 experts from abroad















- Wastes generated from nuclear facility are classified into three categories as High-level radioactive waste (HLW), Low-level radioactive waste (LLW), and WBCL (Waste below clearance level).
- LLW disposal facilities for wastes from NPS have been in operation.
- R & D on the Fukushima Daiichi radioactive wastes are intensively conducted by JAEA/CLADS under the domestic and international collaborations.