Three Mile Island Unit 2 Defueling- Safety & Risk Reduction Process Experience: Core Drilling Machine Evolution

Fukushima Forum

3 July 2017 Lake H. Barrett

Three Mile Island Experience

- Light Water Power Reactor Core Melt Accident
 - 1979: 38 Years ago
 - 14 Year \$1B Decontamination/Defueling Project
- Similar & Different Than Fukushima Daiichi (1F)
 - TMI Major but Less Technically Severe Accident
 - Similar Technical/Management/Social-Political
 Challenges
- Many Lessons Are Applicable
- TMI Was Safely Accomplished & 1F Can Be Also

Three Mile Island Units 1 &2 March 28, 1979

Three Mile Island Unit-2 Accident March 28, 1979

TMI Core Damage Sequence

~120 Min Core Uncovers-Damage Starts 800C Burst (~06:00)

~150Min Core Cladding Oxidize ~1800C (~06:30) L. Barrett Consulting LLC

~226 Min Core Melted ~2700C (~07:30)

TMI Decontamination and Decommissioning (D&D) Approach

- Prompt Safe & Cost Effective Cleanup
 - Control, Contain, Reduce Risks, Stabilize
- Clear End State Focus: Defuel Damaged Core
- Expect Surprises
 - Monitor, Self-Learn, Adapt, Succeed
- Keep Simple
 - Adapt Proven Technologies As Much As Possible
- Work Safely From Outside In
 - Step-wise with Constant Feedback Evolution
- Always: Think, Learn, Create, Improve

TMI D&D Organizations

- General Pubic Utilities Nuclear (GPUN)-Owner/Licensee-Responsible for D&D Work
- US Nuclear Regulatory Commission
 - Delegated Authority to New TMI Program Office (TMIPO)
- US Department of Energy (DOE)
 - Provided Federal R&D Assistance (GEND) to:
 - Allowed DOE Laboratories to Independently Support NRC on Specific NRC Tasks, e.g.
- Nuclear Industry
 - Supported GPUN
 - EPRI Technical Support
 - Nuclear Contractors
 - Bechtel National and Others
 - Bechtel and GPUN Organizations Integrated Together
 - US Navy & Academic Advisors for Review and Assistance Groups

Safety-Risk Reduction Focus

- Safe Prompt Defueling to Place Damaged Fuel/Radioactive Materials Into Safe Engineered Containers
 - Time at Risk In Un-Designed Post Accident
 Condition Was Important Risk Reduction Factor
 - Control & Containment of Radioactive Material
- High Activity Waste Container Safety
 - New Safety Issues, e.g. Hydrogen Generation

Safety Review Process

- Stepwise Evolutionary Process
 - GPUN Safety Evaluation For Each Major D&D Step
 - DOE Safety Support to GPUN
 - USNRC Review/Approval
 - Risk Informed On Site Reviews
 - Within Bounds of NRC Programmatic Environmental Impact Statement
 - Safety Analysis for D&D Operations Within Bounds of Normal Reactor Accident Risk

Core Drilling Machine Evolution

- Beginning- Phase 1: Data Recovery R&D Core Stratification Sampling Machine Tool
 - 1980-86
 - DOE/INL Lead & GPUN Support
- Phase 2: Core Mass Breakup Machine Tool
 - 1986
 - GPUN Lead & DOE/INL Support
- Phase 3: Steel Structure Cutting Machine Tool
 - GPUN Lead & DOE/INL Support
 - -1987-1988

Drilling Machine Evolution

<u>Core Sampling</u> <u>For Analysis/</u> <u>Learning</u>

Core Mass Breaking Defueling

Core Breaking Bit

(U,Zr)O2 ceramic melt

Broken Core Center Fragment

<u>Core Support</u> <u>Structure Removal</u> <u>for Lower</u> Defueling Access

Drilling Operation

Core Plate Segment 13

Core Boring Sampling

Analysis Results

L. Barrett Consulting LLC

Phase 1 Core Bore Sample Evolution

- 1980-82: <u>Developing</u> Sampling Needs Discussions
- 1981-83: DOE/INEL Evaluates <u>Adapting</u> Geologic Core Sampling Drilling Technology
- 1984: Core Sampling Via Core Drilling Safety Discussions (GPUN, DOE, NRC)
- 1985-August: GPUN Safety Submittal to NRC
- 1986-June: NRC/TMIPO Approval SER
- 1986-July: NRC Procedure Approvals & Operations

Safety Issues Evaluated

- Release of radioactivity,
- Criticality,
- Boron dilution,
- Hydrogen evolution,
- Pyrophoricity,
- Fire protection,
- Decay heat removal,
- Reactor vessel integrity,
- Instrumentation interference,
- Heavy load drops,
- Ability to maintain control even if there was a reactor vessel leak,
- Occupational exposures
- There not being an Unreviewed Safety Question

Phase 2: Core Mass Breakup Drilling Evolution

- 1985-86: GPUN Adopted the Drilling Machine as a defueling tool to break up core mass based on positive team experience. Safety Discussions with all.
 - NRC Safety concerns regarding drilling forces on Reactor Vessel Instrument Guide Tube Integrity
- 1986-July: GPUN Safety Submittal to NRC
- 1986-July:NRC/TMIPO Approval SER
 - With Vessel Integrity Location Limitations

Phase 2: Defueling Core Mass Breakup Tool-2

1986-September: GPUN Provides Safety Analysis for Guide Tube Safety

- **1986-October: NRC Approves Drilling over** Wider Area
- **1986-October: NRC Approves Procedures and Drilling Began.**

1986-November: 409 Drill holes Breaks Up Central Core Mass Successfully.

Phase 3: Lower Core Structure **Cutting Tool Evolution**

- 1986-1987: With Good Experience With Drilling Machine, GPUN/EG&G adapts it and discusses with NRC for cutting steel structures for lower fuel access.
- 1987-October: GPUN Safety Submittal for **Cutting LCSA.**
- 1988-January: NRC approves with dimensional controls
- 1988 January: NRC approved procedures and **GPUN cutting begins sequentially and** L. Barrett Consulting LLC successfully

Summary of Safety Lessons

- Constant Onsite Risk Informed Focus
- Adaptive Learning with Safety Hold Points
- Sequential GPUN and NRC Safety Evaluations Built on Previous Experiences
- Early Safety Design Basis Criteria Was Important
- Constant Effective Communications Between:
 - Scientists/Developers
 - Licensee Engineers/Operators
 - Regulators