

Challenges in Risk-Informed Approach to Safer Fuel Debris Retrieval

July 3, 2017 Kazuki Hida

Nuclear Damage Compensation & Decommissioning Facilitation Corporation

 $\ensuremath{\textcircled{\text{CNuclear}}}$ Damage Compensation and Decommissioning Facilitation Corporation

Safer Fuel Debris Retrieval

NDF's fundamental policy for decommissioning of Fukushima Daiich NPS (1F)

To reduce continuously and promptly the radiological risks that resulted from the accident

- Safety is of highest priority among five guiding principles
 - ◆ Safe, proven, efficient, timely, field-oriented
- Risk-informed approach to safer fuel debris retrieval
 - Risks posed by fuel debris
 - Existing baseline risk
 - Radioactive release originated from initiating events
 - Additional risk during retrieval
 - Changes in facilities & fuel debris characteristics
 - Events caused by operation
 - Use of risk management process to understand risks & to reduce level of risks

Risk Management Process

Risk Analysis by Expert Judgment

- Semi-quantitative analysis of consequence & likelihood of occurrence (collaboration with U.S. PNNL)
 - Based on judgment by experts who experienced TMI-2 or Hanford decommissioning
- Risk identification
 - Potential events based on assumed facilities & operation
- Risk analysis & evaluation
 - Five categories for consequence & likelihood of occurrence
 - Effective dose rate estimated by assuming fuel debris characteristics & release paths
 - ◆ Five categories for level of risk
- Risk treatment

Prevention & mitigation measures

Airborne release

Heavy load drop

Waterborne release

Criticality

Hydrogen combustion

Quantitative Risk Analysis Adapted from PRA

- > Events Events identified by experts & loss of safety functions Analysis method Event trees & fault trees **Example probability** by expert judgment Frequencies & probabilities Certain 1.0 Hazard curves for quake & tsunami Likely 0.9 Fragility & random failure from database 0.5 Indeterminate Human error Unlikely 0.1 ◆ Natural phenomena by expert judgment Highly Unlikely 0.001 \blacktriangleright Source Term = MAR x DR x LPF x ARF x RF Impossible 0.0◆ MAR (Material-At-Risk) • Fuel debris, FPs, contaminated water DR (Damage Ratio) & LPF (Leak Path Factor) Expert judgment ◆ ARF (Airborne Release Fraction) & RF (Respirable Fraction)
 - Database

NDF

Preliminary Event Diagram

Core of risk management \rightarrow continued information collection & update

Example of Event Tree & Fault Tree

7

Example of Results & Risk Treatment

©Nuclear Damage Compensation and Decommissioning Facilitation Corporation

Safety Goals

- > 1F reality important for goal setting & their impacts
 - ♦ Uncertainty → conservative safety measures & extended preparation/operation period
 - Extension of time at risk posed by fuel debris
 - ♦ Contamination → operation under high dose environment (implementation, maintenance, etc.)
 - Increase in occupational exposure
- Example of goal setting & safety evaluation
 - ♦ Goal setting
 - Reduce level of risk during retrieval as low as reasonably practicable
 - Consider time at risk posed by fuel debris & occupational exposure

Safety evaluation

• Practical definition of representative agent

Concluding Remarks

Risk-informed safe & prompt fuel debris retrieval

- Expert knowledge collected
- ◆ Quantitative risk analysis method developed & applied
- Lessons learned from preliminary study
 - Benefits of risk-informed approach
 - Understanding of existing risk & risk during retrieval
 - Prioritization of risk treatment
 - Development of risk reduction measures
 - ♦ Challenges in method
 - Challenges: probabilities for natural phenomena & release scenarios
 - Short term solution by expert judgment & mid-to-long term solution by R&Ds

Continued review & update are critical

- Progress in facility design & operation planning
- New information regarding fuel debris characteristics

